Modelling Mining and Oil Projects & Fiscal Regimes

CABRI Dialogue on Extractives

April 2016

A week's modeling course in 2 hours

- 1. The background needed to make it all work (rent, life cycle, characteristics)
- 2. In the market: the impact of cost curves on project revenues
- 3. The Single Period Model: getting our hands on a model
- 4. An annualised model: as the investor sees it
- 5. Some real live models and what they teach us: Tanzania & Mongolia
- 6. What is needed to embed modeling in public institutions?

Mining, oil & gas Features

•Projects exploit a finite resource

•Long, costly exploration periods

•Significant geological, technical, political, environmental risks

•Large up-front investments

•Sophisticated management and specialized technology

•Prices (mostly) set on international markets; price volatility

•High costs of abandonment

•Significant environmental impact & risks

•High community impact

Economic rent

•Deposits vary in size, location & quality. Each therefore has a different production cost

•Investors needs to earn at least the production cost plus an acceptable return on investment

•Prices for most commodities are set on international markets. The price needs to be high enough so that the highest-cost project necessary to meet world demand is made just viable

But that means lower cost projects will make super profits

this is "Economic Rent": the surplus return above the minimum return necessary to induce the investment
Economic Rent could (in theory) be captured by the resource owner - not by the extractor – without deterring the investment

•The trouble is, economic rent is (1) Unknown in advance; (2) Uncertain; and (3) Volatile

•Also, to invest in risky exploration investors need to earn enough profit on successful projects to cover failed exploration

•So, "Economic Rent" is a subtle, somewhat subjective concept, but with profound implications for fiscal regime design

Exploration process

Remote sensing; regional geochemistry; airborne geophysics; seismic surveys

Feasibility study: Mineral Resources Development plan: Resources reclassified as Mineral Reserves

Mining project life cycle

Imagine an open oil industry

OpenOil

Operating Cost

(basic) Cost categories

Exploration	Searching for deposits					
Appraisal	Delineating the size and characteristics of a discovered deposit: Evaluating technical and economic viability					
Development costs	Building the project					
Operating costs	Producing the mineral: Fixed versus Variable with production					
Overheads	Fixed costs of managing production					
Sustaining capital	Replacing equipment periodically. Treated as capital cost for tax purposes					
Rehabilitation and Decommissioning	Costs of clean up during and after production					

"Capital" versus "Operating" costs:

•Capital costs have a benefit beyond a single year, and therefore usually have to be depreciated for tax purposes.

•Operating costs are recurring costs with no lasting benefit, so are expensed immediately for tax

Most economic analysis is done using cashflows where the distinction does not matter, except to calculate tax payments

Capital expenditure often referred to as "Capex". Operating Expenditure as "Opex"

Commodities: supply and demand

What determines the shape of the Supply and Demand curves

Short Term	 Prices and demand curves for end-use products Availability & price of substitutes Cost to switch 	 Flexibility in mine production e.g. putting mines on care and maintenance in price slump Opec (oil)
Long term	 Prices and demand curves for end-use products Availability & price of substitutes Cost to switch 	 Depletion of existing mines Geology: unexploited resources and cost to find and extract Opec Cartel (for oil) Government policy: e.g. Access to resources Fiscal regimes (cost to extract) Carbon reduction policies Nuclear power plant usage Etc.

Inelastic demand

Inelastic supply

Does this help explain recent oil prices?

Quantity Imagine an open oil industry

OpenOil

OpenOil

Remember this?

Real-terms 2014 Commodity Prices

Imagine an open oil industry

Iron ore cost curve example

Source: CRU Ltd, Morgan Stanley Research

http://www.bing.com/images/search?q=iron+ore+cost+curve&id=AE5391761DC3976D4885155D9B61F418A28B03FC&FORM=IQ FRBA#view=detail&id=AE5391761DC3976D4885155D9B61F418A28B03FC&selectedIndex=0

OpenOil Imagine an open oil industry

Iron ore cost curve example

Expansions to low cost seaborne supply will flatten the cost curve

Cost curve for iron ore fines

(US\$/t, nominal, CIF China equivalent basis)

Source: Macquarie Research, October 2013.

Jimmy Wilson, President Iron Ore, 15 October 2013

http://www.sec.gov/Archives/edgar/data/811809/000119312513400510/g613026tx pg08.jpg

OpenOil Imagine an open oil industry

© Alistair Watson & OpenOil CC BY-SA 4.0

Slide 7

Copper example

COPPER COST CURVE

http://www.commodityintelligence.com/7-11Feb11.htm

OpenOil Imagine an open oil industry

Oil

http://www.iea.org/etp/resourcestoreserves/

Oil

Source: Wood MacKenzie, IEA, EIA, Reuters, Company data, World Bank, Deutsche Bank estimates

http://s3.amazonaws.com/zanran_storage/www.sais-jhu.edu/ContentPages/137274942.pdf

) OpenOil Imagine an open oil industry

Case study 1: building a cost curve

Imagine a particular mineral which can be produced by only 10 projects in the world.

Source data		
Project	Production	Unit cost
А	100	4.00
В	125	3.00
С	10	9.00
D	50	8.00
Е	20	10.00
F	200	2.00
G	50	5.20
Н	100	2.75
I	150	2.50
J	45	7.00

OpenOil Imagine an open oil industry

Production and Cost curve

Cost curve cast study (questions)

- 1. If global demand for the mineral is 675 million tonnes, what does the price need to be to ensure production is sufficient?
- 2. At this price, what profit margins do projects F, make? What profit (as a % of revenue) does project A make?
- 3. If demand increased to 725 million tonnes, what would that imply for the price?
- 4. If demand decreased to 575 million tonnes, what would that imply for the price?
- 5. With demand 675 and price \$4.00, what are the implications of Project I expanding production to 250?

Cost Curve: Solutions

1.If global demand for the mineral is 675 million tonnes, what does the price need to be to ensure production is sufficient?

```
•All projects up to and including project A. Price needs to be $4.00
```

2.At this price, what profit margins do projects F, make? What profit (as a % of revenue) does project A make?

```
Project F = (4.00 - 2.00)/4.00 = 50%
Project H = (4.00 - 2.75)/4.00 = 31%
Project A = (4.00 - 4.00)/4.00 = 0%
```

3.If demand increased to 725 million tonnes, what would that imply for the price?

```
•Price increase to $5.20
```

4.If demand decreased to 575 million tonnes, what would that imply for the price?

```
•Decrease to $3.00
```

5.With demand 675 and price \$4.00, what are the implications of Project I expanding production to 250?

•Price falls to \$3.00. Project A goes out of business...

Mineral valuation: example

Project Iron Ore Mine assumptions

Project Assumptions									
Total production	M Tonnes	100	11 years						
Sales price: CFR	\$T	100							
Sea freight	\$T	10							
Sales price: FOB port	\$T	90							
<u>Capital costs (Capex)</u>			Operating costs	(Opex)					
Exploration costs: cash	\$M	50	Operating costs	\$T	30				
Exploration costs: sunk	\$M	-	Overheads	\$M per year	5				
Development capital	\$M	750	Rail transport	\$T	20				
Sustaining capital *	\$M per year	20							
* From yr 2 till 3rd year before production stops									
Decommissioning costs	% DevCapEx	10%							

- Each item here could be broken down further: detailed cost sub-categories etc.
- Choice depends on modelling objective and access to data
- Focus in this course is on fiscal regime modelling: even this aggregated level of detail will give us plenty to analyse

Mining Case Study 1

User to populate the green cells <u>using formulas that pick up source data</u> to derive pre-tax net cashflows for the project over its whole life

Data sources in practice

Mining Company: <u>best source</u> Feasibility studies (EDGAR etc.) Technical colleagues: Sector ministry Rules of thumb Analog projects

Getting good project data out of companies can be challenging...
•Make it a legal requirement

Pre-feasibility; Feasibility; Development plan; Annual updates; "Life of Mine" Plans

•Maintain effective working relationship

Establish agreed formats/templates

•Formally acknowledge that things change: Actual ≠ Forecast

Companies are hesitant to provide data if they will be held to a previous forecast

•See later discussion on revenue forecasting

Fiscal Tools

Royalty	A share of the value of production 3-5% pretty common, rates often vary by mineral
Income tax	A share of profit, determined under tax rules 30% rate pretty common
Resource Rent Tax	Special tax designed to capture a share of economic rent. Uncommon but often recommended by the IMF
Import duties	% of the value of imports
Value Added Tax	% of sales (output VAT) and % of costs (input VAT) Under properly functioning VAT the consumer should bear the cost – not the mining company. But in practice
State participation	Government owned company owns a share in the project
Others	Withholding taxes on subcontractors Withholding taxes on dividends and interest

Investment theory: Time = Money

If you have money you can (a) spend it or (b) invest it You need to be compensated for deferring consumption, which is why interest rates are positive You have \$1.00 and invest it in a bank for 5 years earning 5% interest How much is that \$1.00 worth in 5 years? \$1.28

Interest rate	5.00%				
Year	1	2	3	4	5
Opening Balance	0.00	1.05	1.10	1.16	1.22
Investment	1.00				
Interest	0.05	0.05	0.06	0.06	0.06
Closing Balance	1.05	1.10	1.16	1.22	1.28

Generic Mining Fiscal regime

1/ Assuming the RRT is deductible

Walk through annualized model

Deriving pre-tax cashflows

- Building a production profile
- Building the mineral price FOB port each year
- Phasing of exploration and development costs
- Phasing of sustaining capital
- Operating costs
 - Discussion on fixed versus variable, but simplified 100% variable approach in this model
- Phasing of Overheads
- Rail transport costs
- Note that the net cashflow before tax is the same as the single period model

Mining Model: what-ifs

Government

What price would be needed to ensure \$1 billion to the government over the project life time? Or \$1.5 billion?

What royalty rate would be needed to ensure \$1 billion to the government over the project life time? Or \$1.5 billion?

Investor

What mineral price would result in 15% project Internal Rate of Return for the investor (IRR)?

What happens to the IRR if we increase the commodity price by 10%?

Interaction Between the Two

What happens to government revenues if there is a cost overrun of \$500 million?

Petroleum Project Lifecycle

Onshore vs Offshore Production Profiles

Imagine an open oil industry

Types of Petroleum Arrangements

*Within enabling legislative framework

OpenOil Imagine an open oil industry

"Tax and Royalty" regime for oil

OilCo licensee books 100% minus royalty

Same as mining tax regimes, though because of the potential for higher rent, royalties and tax rates are often higher than mining

Types of Petroleum Arrangements

*Within enabling legislative framework

OpenOil Imagine an open oil industry

Oil Model structure

More complex than mining model: Production Sharing State Participation

Real 1: Bulyanhulu Gold, Tanzania

Context

Started production in 2001 Over three million ounces of gold Barrick Gold spun off (2010) to separately listed Acacia Mining Model: historical production & prices; estimates into the future

Now: income tax dispute

Still no income tax Acacia announced (March): pre-payments of income tax Tanzanian court: Acacia owes \$42 million dividend witholding tax; company disputes

Buly model overview

- A	В	С	D	E	FG	Н	I J	К	L	M	N C	I	P	Q		R	
1																	
2																	
3	3 OpenOil					9,705M Undi	iscounted Project	Sh	are of \$23,	240M Pr	oject Revenue		Production Gold				
4	4 Bulyanhulu Gold Mine Tanzania					Net Cashi	IOW					400					
5												350				-	
c i	Input cell		Coloulation	WAUD					Mining			300	-			-	
-	Linked cell		Observe						23%			ğ 250	-			-	
-	Enned den		Charts	WAHR			nt, 45%					0 12 200					
8			Audit trail	WAHR	Mining							9 150					
9					company, 55%				Government		Costs, 58%	Ê					
10						\			, 19%			100				-	
11	Model Inputs and A	ssump	otions							/		50	-				
12	Project Assumptions											•			2025 2040 2045		
13	Actual to 2014; Acacia forecast 2015-2019			,								2	000 2005 2010 2015	2020 2025 2080	2035 2040 2045	/ 2050	
14	Production Gold 2020 to 2034	source	350	KOz/yr													
15	Last year of production	source	2048	year	Government F	Revenue (\$N	1)					Governmen	t Revenue Profile				
16	Sustaining capital 2020 on	source	70	\$M year	l otal governn	nent revenue	over project life	4,361									
17	Operating costs 2020 on	source	450	\$/Oz	Snapshot Yea	rs <u>2015</u>	2020 2025	2030	2040		200						
18	Cold Drives 2015 (annual		1000	40-	\$191191	19	103 115	127	100		180						
19	Gold Prices: 2013 Forward gold prices: actual uptil 2015	source	1,200]\$/UZ	Project coope	mioc		100		1721.1404					10 A 10		
20	Fiscal Regime				Project lotern	al Rate of Re	turn (Eull-cucle)	13.1%	9 705	294	160						
22	Roualtu till 2012	course	2.00%	V net-back	Government		.cam(r an ogoic)	n.a.	4 261	256	140				100		
22	Royalty from 2012 on	Source	4.00%	V net-back	Mining compa	anu, after fina	nce	10.6%	5 245	230	c 120						
24	Additional Canital Allowance (ACA)	source	15.00%	7. Het-back	Lender			8.2%	99	(9)	ill inc			18 C - 1			
25	Last year of ACA*	source	2006	uear	Mining compa	any, before fir	nance	10.4%	5.344	29	2 100						
26	Does ACA compound?	source	Yes	select	Government s	share			45%	90%	3 80					- · ·	
27	* Additional Capital Allowance				Mining compa	any, after fina	nce, 2015 on			1,370	60						
28	Income tax rate	source	30.00%	×							40						
29	Dividend withholding tax	source	10.00%	%	Government r	evenues			NPV0	NPV10							
30	Interest withholding tax	source	0.00%		Royalty				923	87	20					-	
31	Import duties average rate	source	5.00%		Import duties				164	22	0 H444					****	
32	Import duties apply from production year	source	2		Income tax	Starts:	2019		2,691	118	2000	2005 2010 20	015 2020 2025	2080 2085	2040 2045	2050	
-22	▶ ▶ Notes Sheet1 Dash	board	Inputs	Calcu	lations Ch	artData		/									
Ber	ait Berechnen			A													
Dere	ac berechnen																

OpenOil Imagine an open oil industry

Buly model: where is income tax?

Government Revenue Profile

OpenOil Imagine an open oil industry

Case 2: Oyo Tolgoi, Mongolia

Context

Copper and Gold mine signed in 2002 Taken over by Rio, through an entity called Turquoise Hill Government negotiated hard fought 34% stake in the venture

Now

Highly sensitive to prices: 2010-55 NPV is negative in today's prices Withholding taxes and VAT are significant in early life The state participation does not earn money until the mid-2030s

Oyo Tolgoi: Waiting for state %

OpenOil Imagine an open oil industry

Has modeling been hard to build?

Challenges:

Complex Non-standardised Non-adapted: each model should answer specific questions *Leading to: Slides in presentations, not full workings in model*

Ways to meet those challenges:

Standardised modeling methodologies across agencies & countries Full source citation integrated into model Open modeling processes leading to direct peer review Leading to: a Public Financial Management paradigm of modeling

Skills pyramid for modeling capacity

the Single Number Super-model

OpenOil Imagine an open oil industry